Trigonometric Ratios of `30^\circ`, `45^\circ`, `60^\circ`
In a triangle with angles `30^\circ`, `60^\circ`, `90^\circ`, the lengths of the sides of the triangle are in the ratio:
` 1:2:\sqrt3 `
This ratio has been illustrated in the triangle below:

Example 1:
Find the values of all the six trigonometric ratios of `30^\circ`
Solution: In the triangle shown above, for angle `\theta` = `30^\circ`
Adjacent = ` \sqrt(3)`; Opposite = 1 ; Hypotenuse = 2
Therefore,
cos `30^\circ` = `text(Adjacent)/text(Hypotenuse)` = `\sqrt(3)/(2)` ; sin `30^\circ` = `text(Opposite)/text(Hypotenuse)` = `1/(2)`
tan `30^\circ` = `text(Opposite)/text(Adjacent)` = `1/(\sqrt(3))` ; cosec `30^\circ` = `text(Hypotenuse)/text(Opposite)` = ` 2/(1) `
sec `30^\circ` = `text(Hypotenuse)/text(Adjacent)` = ` 2/(\sqrt(3)) ` ; cot `30^\circ` = `text(Adjacent)/text(Opposite)` = `(\sqrt(3))/(1) `
Example 2:
Find the values of all the six trigonometric ratios of `60^\circ`
Solution: According to the triangle shown below, for angle `\theta` = `60^\circ`
Adjacent = 1 ; Opposite = ` \sqrt(3) ;` Hypotenuse = 2
Therefore,
cos `60^\circ` = `text(Adjacent)/text(Hypotenuse)` = ` 1/(2)` ; sin `60^\circ` = `text(Opposite)/text(Hypotenuse)` = `\sqrt(3)/(2)`
tan `60^\circ` = `text(Opposite)/text(Adjacent)` = `\sqrt(3)/(1)` ; cosec `60^\circ` = `text(Hypotenuse)/text(Opposite)` = `2/(\sqrt(3))`
sec `60^\circ` = `text(Hypotenuse)/text(Adjacent)` = ` 2/(1)` ; cot `60^\circ` = ` text(Adjacent)/text(Opposite)` = `(1)/(\sqrt(3))`
In a triangle with angles `45^\circ`, `45^\circ`, `90^\circ`, the lengths of the sides of the triangle are in the ratio:
`1:1:\sqrt2`
This ratio has been illustrated in the triangle below:

Example 3:
Find the values of all the six trigonometric ratios of `45^\circ`
Solution:In the triangle shown above, for angle `\theta` = `45^\circ`
Adjacent = 1 ; Opposite = 1 ; Hypotenuse = ` \sqrt(2)`
Therefore,
cos `45^\circ` = `text(Adjacent)/text(Hypotenuse)` = `1/(\sqrt(2))` ; sin `45^\circ` = `text(Opposite)/text(Hypotenuse)` = `1/(\sqrt(2))`
tan `45^\circ` = `text(Opposite)/text(Adjacent)` = ` 1/(1)` ; cosec `45^\circ` = `text(Hypotenuse)/text(Opposite)` = `\sqrt(2)/(1)`
sec `45^\circ` = `text(Hypotenuse)/text(Adjacent)` = `\sqrt(2)/(1)` ; cot `45^\circ` = `text(Adjacent)/text(Opposite)` = ` 1/(1)`
Trigonometric Ratios of `30^\circ`, `45^\circ`, `60^\circ`
The table given below summarizes the trigonometric ratios of angles `0^\circ`, `90^\circ`, `180^\circ`, `270^\circ`
`\theta` | Cos `\theta` | Sin `\theta` | Tan `\theta` | Cosec `\theta` | Sec `\theta` | Cot `\theta` |
`30^\circ` | `\sqrt(3)/(2)` | `1/(2)` | `1/(\sqrt(3))` | `2/(1)` | `2/\sqrt(3)` | `(\sqrt(3))/(1)` |
`45^\circ` | `1/(\sqrt(2))` | `1/(\sqrt(2))` | 1 | `\sqrt2` | `\sqrt2` | 1 |
`60^\circ` | `1/(2)` | `\sqrt(3)/(2)` | `\sqrt(3)/(1)` | `2/\sqrt(3)` | `2/(1)` | `1/\sqrt(3)` |